Long-term exposure to air-pollution and COVID-19 related mortality

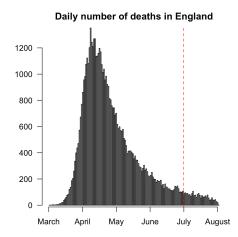
Garyfallos Konstantinoudis

MRC Centre of Environment and Health

Outline

Introduction

Methods


Results

Discussion

Introduction

COVID-19 in the UK

- WHO announced COVID-19 outbreak as a pandemic on 11 March 2020.
- In the UK 40,000 deaths.
- Age, sex, ethnicity.
- Diabetes, COPD, hypertension etc.
- Sparked discussion about air-pollution.

Previous studies

Authors	Country	Pollutants	Effect
Oregom 2020	EU	NO ₂	83% of the fatalities $NO_2 > 100 \mu mol/m^2$
			8% (2%, 15%)
Wu 2020	US	PM _{2.5}	$1\mu g/m^3$
Travaglio 2020	England	NO ₂ , NO, O ₃	NO ₂ (p<0.05)
			NO ₂ : 11.2% (3.4%, 19.5%) per $5.625 \mu g/m^3$
Liang 2020	US	NO_2 , $PM_{2.5}$, O_3	PM _{2.5} : 10.8% (-1.1%, 24.1%) per $3.4 \mu g/m^3$
			NO ₂ : 0.35 deaths for $1\mu g/m^3$
Cole 2020	Netherlands	NO ₂ , PM _{2.5} , SO ₂	${\sf PM}_{2.5}$: 2.3 deaths for $1\mu g/m^3$

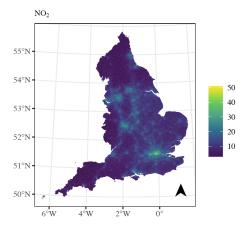
Limitations of previous studies

- Large spatial units: Oregon EU countries, Travaglio 317
 LTLAs, Wu & Liang 3,122 counties, Cole: 335 municipalities.
 - Exposure varies on high resolution.
 - Insufficient adjustment for confounding.
 - Ecological bias
- Previous studies were in early stages of the epidemic.
- Lack of spatial component.

Examine the effect of $PM_{2.5}$ and NO_2 (independently) on COVID-19 related mortality:

- Propose a model to downscale the COVID-19 related deaths from LTLAs to LSOA using information on population density, age, sex and ethnicity.
- Use the downscaled COVID-19 related deaths and examine the effect of PM_{2.5} and NO₂.

Methods


Outcome and Exposure

Outcome

- Public Health England.
- COVID-19 deaths from PHE until June 30.
- Confirmed COVID-19 related deaths.

Exposure

- Pollution Climate Mapping (R² =0.88 for NO₂ and R² = 0.63 for PM_{2.5}).
- Long term exposure: Past 5 years (2014-2018).

Confounding

Covariates	Source	Spatial resolution
Temperature	MetOffice	1km ²
Relative humidity	MetOffice	1km ²
Deprivation	IMD	LSOA
Age	PHE & ONS	ind for deaths, LSOA
Sex	PHE & ONS	ind for deaths, LSOA
Ethnicity	PHE & ONS	ind for deaths, LSOA
Urbanicity	ONS	OA & SOA
Days since 1st case reported	testing data	LTLA
# of positive cases	testing data	LTLA
Population density	ONS	LSOA
Critical Care Bed Capacity	NHS England	NHS Trust
Smoking	PHE	GP catchment areas
Obesity	PHE	GP catchment areas

Epidemiological model: Disaggregation

- COVID-19 deaths available at LTLA.
- i age, j sex, k ethnicity and I the set of LSOAs in one LTLA.
- Calculate $p_{ijkl} = N_{ijkl} / \sum_{l} N_{ijkl}$ for every I.
- Weighted sample (p_{ijkl}) with replacement.
- Perform 100 times and propagate the uncertainty.

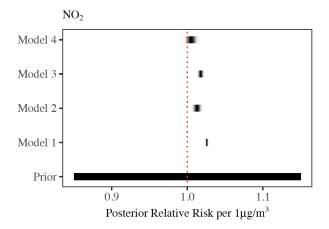
Epidemiological model

Let W an observation window, $A_1, ..., A_N$ a partition, Y_i be the COVID-19 deaths, E_i the expected and λ_i the risk in A_i :

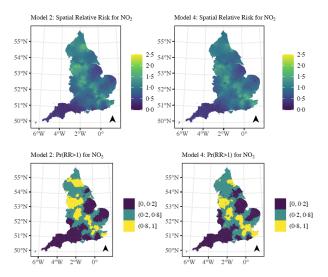
$$Y_{i}|\lambda_{i}, E_{i} \sim \text{Poisson}(\lambda_{i}E_{i})$$

$$\log(\lambda_{i}) = \beta_{0} + \alpha x_{i} + \mathbf{z}_{i}^{T}\boldsymbol{\beta} + u_{i} + v_{i}$$

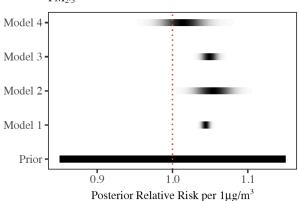
$$u_{i}|\mathbf{u}_{-i} \sim \mathcal{N}\left(\frac{\sum_{j=1}^{N} w_{ij}u_{j}}{\sum_{j=1}^{N} w_{ij}}, \frac{1}{\tau_{1}\sum_{j=1}^{N} w_{ij}}\right)$$


$$v_{i} \sim \mathcal{N}(0, \tau_{2}^{-1})$$

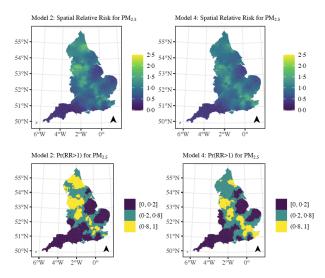
$$\beta_{0}, \alpha, \boldsymbol{\beta} \sim \mathcal{N}(0, \sigma^{2})$$


 $\tau_1, \tau_2 \sim \mathsf{PCpriors}$

Results


Epidemiological model for NO₂: Main effect

Epidemiological model for NO₂: spatial relative risk



Epidemiological model for $PM_{2.5}$: Main effect

 $PM_{2\cdot 5}$

Epidemiological model for PM_{2.5}: Spatial Relative Risk

Discussion

Summary of the results

- ▶ 2.6% (2.4%-2.7%) for every unit increase in NO₂.
- ▶ 4.4% (3.7%-5.1%) for every unit increase in PM_{2.5}.
- Weak effect after adjusting for confounders and spatial autocorrelation.
- The latent field unaffected and potentially captures disease spread.

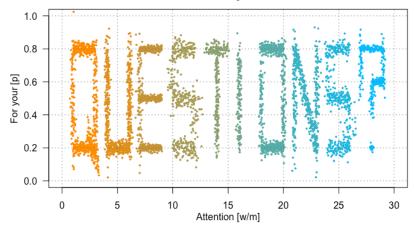
In context with previous studies for NO_2

- Travaglio et al 2020, England: increased COVID-19 mortality (p<0.05).
- Liang et al 2020, US: 7.1% (1.2%, 13.4%) increased
 COVID-19 mortality for 5.625µg/m³ increase in NO₂
- Cole et al 2020, Netherlands: 2% increased COVID-19 mortality for 1µg/m³ increase in NO₂.
- We found 2.6% (2.4%-2.7%) in the unadjusted and 0.5%(-0.2% - 1.2%) in the fully adjusted.

In context with previous studies for $PM_{2.5}$

- Wu et al 2020, US: 8% (2%, 15%) increased COVID-19 mortality for 1µg/m³ increase in PM_{2.5}.
- Liang et al 2020, US: 10.8% (-1.1%, 24.1%) increased
 COVID-19 mortality for 3.4µg/m³ increase in PM_{2.5}.
- Cole et al 2020, Netherlands: 13.0% increased COVID-19 mortality for 1µg/m³ increase in PM_{2.5}.
- We found 4.4% (3.7%-5.1%) in the unadjusted and 1.4%
 (-2.1%-5.1%) in the fully adjusted.

Conclusion


 Weak evidence of an association between air-pollution and COVID-19 mortality.

 Effect of previous studies might be confounded with disease spread.

Take home message

Given the lack of individual exposure and pre-existing conditions data, our analysis is suggestive of a weak, if any, association of long-term average exposure to NO_2 and $PM_{2.5}$ on COVID-19 mortality.

Thank you

