UNIVERSITÄT BERN

h

Discrete and continuous domain models for disease mapping and applications on childhood cancers

Garyfallos Konstantinoudis

Institute of Social and Preventive Medicine, University of Bern

August 19, 2019

Outline

Background

Simulation study

Application on childhood cancers

Take home message

Background

Childhood Cancers

- 200 children (0-14) diagnosed with cancer every years in Switzerland
- Ionizing radiation in high
- Hypothesised environmental

Incidence per 1,000,000 person years

Childhood Cancers

- 200 children (0-14) diagnosed with cancer every years in Switzerland
- Ionizing radiation in high doses cause childhood cancer
- Hypothesised environmental

Incidence per 1,000,000 person years

Childhood Cancers

- 200 children (0-14) diagnosed with cancer every years in Switzerland
- Ionizing radiation in high doses cause childhood cancer
- Hypothesised environmental risk factors: air-pollution, pesticide exposure, infections etc.

Incidence per 1,000,000 person years

Data availability

Available tools

Spatial Regression

HPV vaccination uptake in Switzerland

Previous studies

- Areal data: BYM
 - Besag Ann Inst Statist Math 1991
 - Acute Leukaemia in France (Faure Eur J Cancer Prev 2009), Childhood leukaemia and Type 1 Diabetes in Yorkshire (Manda Eur J Epidemiol 2009)
- Point data: Log Gaussian Cox Processes (LGCPs)
 - Møller et al. Scand J Stat 1998
 - Cancer mapping: Lung cancer in Spain (Diggle Stat Sci 2013), Colon and rectum in Minnesota (Liang Ann Appl Stat 2008)
 - none for childhood cancers
- Compared these methods:
 - Lung and stomach cancer (Li J R Stat Soc C-Appl 2012)
 - Syphilis (Li Methods in Medical Research 2012)
 - Cancer mortality (Kang PLOS one 2013)

Previous studies

- Areal data: BYM
 - Besag Ann Inst Statist Math 1991
 - Acute Leukaemia in France (Faure Eur J Cancer Prev 2009), Childhood leukaemia and Type 1 Diabetes in Yorkshire (Manda Eur J Epidemiol 2009)
- Point data: Log Gaussian Cox Processes (LGCPs)
 - Møller et al. Scand J Stat 1998
 - Cancer mapping: Lung cancer in Spain (Diggle Stat Sci 2013), Colon and rectum in Minnesota (Liang Ann Appl Stat 2008)
 - none for childhood cancers
- Compared these methods:
 - Lung and stomach cancer (Li J R Stat Soc C-Appl 2012)
 - Syphilis (Li Methods in Medical Research 2012)
 - Cancer mortality (Kang PLOS one 2013)

Previous studies

- Areal data: BYM
 - Besag Ann Inst Statist Math 1991
 - Acute Leukaemia in France (Faure Eur J Cancer Prev 2009), Childhood leukaemia and Type 1 Diabetes in Yorkshire (Manda Eur J Epidemiol 2009)
- Point data: Log Gaussian Cox Processes (LGCPs)
 - Møller et al. Scand J Stat 1998
 - Cancer mapping: Lung cancer in Spain (Diggle Stat Sci 2013), Colon and rectum in Minnesota (Liang Ann Appl Stat 2008)
 - none for childhood cancers
- Compared these methods:
 - Lung and stomach cancer (Li J R Stat Soc C-Appl 2012)
 - Syphilis (Li Methods in Medical Research 2012)
 - Cancer mortality (Kang PLOS one 2013)

BYM model

Let \mathcal{W} an observation window, $A_1, ..., A_N$ a partition of \mathcal{W} , Y_i be the disease counts P_i the population and λ_i the risk in A_i :

$$Y_{i}|\lambda_{i}, P_{i} \sim \text{Poisson}(\lambda_{i}P_{i})$$
$$\log(\lambda_{i}) = \beta_{0} + z_{i}^{T}\beta + u_{i} + v_{i}$$
$$u_{i}|\mathbf{u}_{-i} \sim \mathcal{N}\Big(\frac{\sum_{j=1}^{N} w_{ij}u_{j}}{\sum_{j=1}^{N} w_{ij}}, \frac{1}{\tau_{1}\sum_{j=1}^{N} w_{ij}}\Big)$$
$$v_{i} \sim \mathcal{N}(0, \tau_{2}^{-1})$$
$$\beta_{0}, \beta \sim \mathcal{N}(0, \sigma^{2})$$
$$\tau_{1}, \tau_{2} \sim \text{PCpriors}$$

Log-Gaussian Cox Processes

Let \mathcal{W} an observation window and Ξ a point process with intensity $\lambda(s)$ on the s location:

$$\Xi | \lambda(s) \sim \mathsf{Poisson}(\int_{\mathcal{W}} \lambda(s) ds)$$
$$\log(\lambda(s)) = \log(\lambda_0(s)) + \beta_0 + z(s)^T \beta + u(s)$$
$$u(s) \sim \mathsf{GF}(0, \mathbf{\Sigma}(h, \tau, \phi))$$
$$\kappa(h) = \tau^2 \rho_{\nu}(h/\phi), \rho_{\nu}(\cdot) \text{ Matérn}$$
$$\beta_0, \beta \sim \mathcal{N}(0, \sigma^2)$$
$$\tau, \phi \sim \mathsf{PCpriors}$$

Simulation study

Simulation Study

- Canton of Zurich
- ▶ *N* = 205, 242 (15%) children
- Leukaemia incidence
 1985-2015 (n = 334)

Radius	RR	times n	decay
1km	2	1	step function
5km	5	5	smooth function
10km	-	10	-

Figure: Population density and circles

Simulation Study; Metrics

Quantify the risk in space

Root mean integrated square error (RMISE)

$$\mathsf{RMISE} = \left(\mathbb{E} \int_{\mathcal{W}} b(s) (\log(\hat{\lambda}(s)) - \log(\lambda(s)))^2 ds \right)^{1/2} = \\ \left(\mathbb{E} \sum_{g=1}^{G} b_g |D_g| (\log(\hat{\lambda}_g) - \log(\lambda_g))^2 \right)^{1/2}$$

Identify high-risk areas

Sensitivity, Specificity and area under the curve (AUC)

Results in a nutshell; RMISE, 5n

	BYM	LGCP			
Step function					
Radius = 1km					
RR = 2	4.47 (3.17, 6.81)	6.62 (4.24, 9.88)			
RR = 5	10.4 (8.77, 12.5)	14.8 (13.1, 17.1)			
Radius = 5km					
RR = 2	11.6 (10.6, 13.1)	12.2 (10.8, 14.7)			
RR = 5	22.8 (21.4, 24.5)	21.5 (19.6, 24.6)			
Radius = 10km					
RR = 2	14.9 (14.3, 15.8)	12.1 (11, 14.4)			
RR = 5	28.4 (27.3, 29.8)	22.3 (20.8, 24.6)			
Smooth function					
Radius = 1km					
RR = 2	4.48 (3.1, 6.88)	6.51 (4.27, 9.9)			
RR = 5	10.8 (8.82, 12.5)	14.8 (13, 16.8)			
Radius = 5km					
RR = 2	10.4 (9.32, 12)	11 (9.33, 14.3)			
RR = 5	19.2 (18, 20.6)	16.8 (14.8, 19.9)			
Radius = 10km					
RR = 2	12.3 (11.5, 13.4)	10.1 (8.57, 12.7)			
RR = 5	21.8 (21, 22.8)	13.9 (12.1, 17)			

Results in a nutshell; ROC-curves, Step-function, 5n

Results in a nutshell; ROC-curves, Step-function, 5n

Clear Message

There are important gains to be made from the use of LGCPs

Application on childhood cancers

Aims

- 1. Create smooth maps of childhood cancer risk in Switzerland (disease mapping)
- 2. Examine the sources of the observed spatial variation (spatial regression)
- 3. Assess the residual spatial variation

Methods; Population

Cases

- Children aged 16 < years at diagnosis
- Registered in SCCR
- Diagnosed in Switzerland during 1985-2015

Outcomes

- All cancers, Leukaemia, Lymphoma, CNS tumours
- Address at birth and diagnosis

Population at risk

- Entire Swiss population from censuses (1990, 2000, 2010 onwards)
- Calculate expected number of cases per grid cell to adjust for age, population density and year of diagnosis

Methods; Population

Cases

- Children aged 16 < years at diagnosis
- Registered in SCCR
- Diagnosed in Switzerland during 1985-2015

Outcomes

- All cancers, Leukaemia, Lymphoma, CNS tumours
- Address at birth and diagnosis

Population at risk

- Entire Swiss population from censuses (1990, 2000, 2010 onwards)
- Calculate expected number of cases per grid cell to adjust for age, population density and year of diagnosis

Methods; Population

Cases

- Children aged 16 < years at diagnosis
- Registered in SCCR
- Diagnosed in Switzerland during 1985-2015

Outcomes

- All cancers, Leukaemia, Lymphoma, CNS tumours
- Address at birth and diagnosis

Population at risk

- Entire Swiss population from censuses (1990, 2000, 2010 onwards)
- Calculate expected number of cases per grid cell to adjust for age, population density and year of diagnosis

Methods; Covariates

Variable	Unit	Туре	Spatial unit	Year
	$\mu g/m^3$	Continuous	200×200 <i>m</i> ²	1990, 2000
				2010
Total radiation	nSv/h	Continuous	2x2 <i>km</i> ²	1960-95
Swiss-SEP	index	Continuous	Building level	2000
Cantonal registry	Years [y]	Continuous	canton	2015
Language region	-	Ge, Fr, It	Municipality	2012
Linhanization laval	-	rural, semi,	Municipality	2012
Urbanisation level		urban		
Cantonal registry Language region Urbanisation level	- -	Ge, Fr, It rural, semi, urban	Canton Municipality Municipality	2015 2012 2012

Results; Maps LGCPs

Results; Association at diagnosis

Results; Residual variation at diagnosis

Post-hoc analyses: CNS tumours

Differences in case ascertainment:

- Restrict to 1995-2015
 (> 95% completeness)
- SPOG clinics areas
 - Medstat regions
 - Proportion of cases reported in *j*-th SPOG clinic
 - Flag area based on max probability
 - Denoise based on the neighboring areas

Post-hoc analyses: CNS tumours

Take home message

- Use LGCPs when precise data is available
- Childhood cancers and in particular CNS tumours vary in space

References

Konstantinoudis G, Schuhmacher D, Ammann R, Diesch T, Kuehni C, Spycher D. Bayesian spatial modelling of childhood cancer incidence in Switzerland using exact point data: A nationwide study during 1985-2015. medRxiv 19001545. https://doi.org/10.1101/19001545. 2019

Konstantinoudis G, Schuhmacher D, Rue H, Spycher B. **Discrete** versus continuous domain models for disease mapping. arXiv preprint arXiv:1808.04765. 2018

Email: garyfallos.konstantinoudis@ispm.unibe.ch

Twitter : @konstantinoudis

Thank you

